

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-[1,2-Phenylenebis(methylene)]bis(1ethyl-1H-benzimidazol-1-ium) bis(hexaflourophosphate)

Rosenani A. Hague,^a Muhammad Adnan Igbal,^a Mohd Mustaqim Rosli^b and Hoong-Kun Fun^{b*}‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 26 April 2012; accepted 30 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.098; data-toparameter ratio = 18.1.

In the title compound, $C_{26}H_{28}N_4^{2+}\cdot 2PF_6^{-}$, the complete cation is generated by a crystallographic twofold axis. The benzimidazole ring is almost planar (r.m.s. deviation = 0.0207 Å) and makes dihedral angles of 50.12 (2)° with its symmetryrelated component and $65.81 (2)^{\circ}$ with the central benzene ring. In the crystal, molecules are linked into a threedimensional network by C-H···F interactions. A π - π interaction with a centroid-centroid distance of 3.530 (1) Å is observed. Four F atoms of the hexafluorophosphate anion are disordered over two sets of sites in a 0.889 (6):0.111 (6) ratio.

Related literature

For the biological applications of benzimidazoles, see: Narasimhan et al. (2012). For a related structure, see: Haque et al. (2012).

Experimental

Crystal data C26H28N42+·2PF6

 $M_r = 686.46$

‡ Thomson Reuters ResearcherID: A-3561-2009.

Data collection

Bruker SMART APEXII CCD	14787 measured reflections
diffractometer	3921 independent reflections
Absorption correction: multi-scan	3156 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.037$
$T_{\min} = 0.933, T_{\max} = 0.963$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	217 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
3921 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1A\cdots F6^{i}$	0.95	2.42	3.142 (3)	133
C3−H3A···F5 ⁱⁱ	0.95	2.45	3.374 (2)	166
$C5-H5A\cdots F5^{iii}$	0.95	2.52	3.420 (3)	159
$C6-H6A\cdots F4^{iv}$	0.95	2.53	3.392 (2)	151
$C8-H8B\cdot\cdot\cdot F1^{i}$	0.99	2.39	3.350 (3)	164
$C13-H13C\cdots F1^{v}$	0.98	2.55	3.523 (2)	174
$C13-H13C\cdots F5^{v}$	0.98	2.50	3.166 (2)	125

Symmetry codes: (i) x - 1, y, z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $-x + 1, y, -z + \frac{3}{2}$; (v) -x + 1, -y + 2, -z + 2.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

RAH thanks Universiti Sains Malavsia (USM) for the Research University (RU) grants (1001/PKIMIA/811157 and 304/PKIMIA/6511123). MAI is grateful to (IPS) USM for financial support [fellowship: USM-IPS/JWT/1/19 (JLD 6)] and the research attachment fund [P-KM0018/10(R) - 308/AIPS/415401]. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6760).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haque, R. A., Iqbal, M. A., Fun, H.-K. & Arshad, S. (2012). Acta Cryst. E68, 0924-0925.

Narasimhan, B., Sharma, D. & Kumar, P. (2012). Med. Chem. Res. 21, 269-283. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Z = 4

Mo $K\alpha$ radiation

 $0.26 \times 0.26 \times 0.14 \text{ mm}$

 $\mu = 0.27 \text{ mm}^{-1}$

T = 100 K

supplementary materials

Acta Cryst. (2012). E68, o1635 [doi:10.1107/S1600536812019344]

3,3'-[1,2-Phenylenebis(methylene)]bis(1-ethyl-1*H*-benzimidazol-1-ium) bis-(hexaflourophosphate)

Rosenani A. Haque, Muhammad Adnan Iqbal, Mohd Mustaqim Rosli and Hoong-Kun Fun

Comment

Benzimidazole-constituted compounds are known as bioactive heterocyclic compounds that are of wide interest for biological and clinical applications (Narasimhan *et al.*, 2012). As a part of our ongoing studies in this area (Haque *et al.*, 2012), we now describe the title compound.

All parameters in the title compound (Fig. 1) are within normal ranges. The complete molecule is generated by a crystallographic two-fold axis. The benzimidazole (N1—N2/C1—C7) ring is planar with the r.m.s 0.0207 Å. It makes a dihedral angle of 50.12 (2)° with its symmetrical component and 65.81 (2) Å with the central benzene ring (C9—C11/C9A—C11A). Four fluorine atoms (F1—F4) of the hexafluorophosphate cation are disordered over two positions with the final refined occupancies of 0.889 (6):0.111 (6).

In the crystal structure, (Fig. 2), the molecules are linked into a three-dimensional network through intermolecular C— H…F hydrogen bonds (Table 1). A π - π interaction with centroid-centroid distance of 3.530 (1) Å is observed (Cg1 = C2— C7).

Experimental

A mixture of benzimidazole (1.18 g, 10 mmol) and potassium hydroxide (1.18 g, 15 mmol) in 30 ml of DMSO was stirred at room temperature (27–28°C) for 30 min. Ethyl bromide (0.75 ml, 10 mmol) was added drop-wise into this consistently stirring mixture and it was further stirred for 2 h at same temperature, then poured into water (150 ml) and was extracted by chloroform (3×20 ml). The extract was filtered by five plies of filter papers with medium porosity to collect a crystal-clear solution which was evaporated under vacuum to get *N*-ethylbenzimidazole (I) as a thick yellowish fluid. Then, a mixture of I (0.73 g, 5 mmol) and 1,2- bis(bromomethyl)benzene (0.66 g, 2.5 mmol) in 1,4-dioxane (20 ml) was refluxed at 110°C for 12 h. The bromide salt of title compound appeared as beige-colored precipitates in a dark brown solution. The mixture was filtered and the precipitates were washed by fresh 1,4-dioxane (3×5 ml) and dried at room temperature for 24 h. The soft lumps so obtained were dissolved in methanol (30 ml) along with KPF₆ (1.84 g, 10 mmol) and stirred for 3 h at room temperature. The white solid that appeared was filtered, washed by fresh methanol followed by water. The compound was dried at room temperature (1.53 g, 89.5%). A saturated solution of 2.2PF₆ dissolved in acetonitrile (1 ml) was prepared. The compound was dissolved in it and the solution was evaporated at room temperature to collect colourless blocks of the title compound.

Refinement

All H atoms attached to C atoms were fixed geometrically and refined as riding with C—H = 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl). A rotating group model was applied to the methyl group. Four fluorine atoms (F1—F4) of the hexafluorophosphate cation are disordered over two positions with the final refined occupancies of

0.889 (6):0.111 (6). The minor component was refined isotropically.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

F4A F4 F3 F1A F5 F1A F3 F5 F1A F5 F1A F3 F5 F1A F5 F1A

Figure 1

The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

3,3'-[1,2-Phenylenebis(methylene)]bis(1-ethyl-1H-benzimidazol-1-ium) bis(hexaflourophosphate)

Crystal data

C₂₆H₂₈N₄²⁺·2PF₆⁻ $M_r = 686.46$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.2016 (5) Å b = 8.1526 (2) Å c = 16.9992 (4) Å $\beta = 121.274$ (1)° V = 2748.23 (11) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.933, T_{\max} = 0.963$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.098$ S = 1.05 F(000) = 1400 $D_x = 1.659 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3899 reflections $\theta = 2.5-29.7^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.26 \times 0.26 \times 0.14 \text{ mm}$

14787 measured reflections 3921 independent reflections 3156 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 29.8^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -32 \rightarrow 31$ $k = -11 \rightarrow 9$ $l = -23 \rightarrow 23$

3921 reflections217 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0339P)^2 + 4.2095P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or equivalent	isotropic displacement parameters	(A^2)
-----------------------------------	---------------------------	-----------------------------------	---------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.89811 (2)	0.80829 (6)	0.89390 (3)	0.01579 (11)	
F5	0.84112 (5)	0.94532 (13)	0.83897 (7)	0.0220 (2)	
F6	0.95467 (6)	0.67136 (15)	0.94831 (8)	0.0323 (3)	
F1	0.95400 (8)	0.92423 (17)	0.89472 (17)	0.0309 (5)	0.889 (6)
F2	0.91321 (10)	0.8889 (2)	0.98909 (10)	0.0303 (5)	0.889 (6)
F3	0.84260 (11)	0.6929 (2)	0.8940 (2)	0.0311 (5)	0.889 (6)
F4	0.88302 (12)	0.7290 (2)	0.79927 (10)	0.0314 (5)	0.889 (6)
F1A	0.9350 (7)	0.9043 (15)	0.8457 (11)	0.024 (3)*	0.111 (6)
F2A	0.9323 (8)	0.9133 (18)	0.9770 (10)	0.032 (4)*	0.111 (6)
F4A	0.8573 (8)	0.7032 (18)	0.7950 (10)	0.029 (3)*	0.111 (6)
F3A	0.8547 (9)	0.713 (2)	0.9237 (11)	0.024 (4)*	0.111 (6)
N1	0.16728 (7)	0.66335 (17)	1.09095 (9)	0.0146 (3)	
N2	0.10920 (7)	0.67626 (18)	0.94040 (9)	0.0154 (3)	
C1	0.10867 (8)	0.7060 (2)	1.01737 (11)	0.0157 (3)	
H1A	0.0717	0.7513	1.0192	0.019*	
C2	0.20844 (8)	0.5997 (2)	1.06084 (11)	0.0142 (3)	
C3	0.27289 (8)	0.5312 (2)	1.10913 (12)	0.0174 (3)	
H3A	0.2982	0.5254	1.1744	0.021*	
C4	0.29766 (9)	0.4723 (2)	1.05606 (13)	0.0206 (4)	
H4A	0.3410	0.4226	1.0859	0.025*	
C5	0.26085 (9)	0.4833 (2)	0.95923 (13)	0.0212 (4)	
H5A	0.2802	0.4424	0.9257	0.025*	
C6	0.19723 (9)	0.5525 (2)	0.91211 (12)	0.0174 (3)	
H6A	0.1723	0.5610	0.8469	0.021*	
C7	0.17168 (8)	0.6091 (2)	0.96517 (11)	0.0150 (3)	
C8	0.05184 (8)	0.6967 (2)	0.84619 (11)	0.0163 (3)	
H8A	0.0663	0.7624	0.8105	0.020*	
H8B	0.0157	0.7582	0.8480	0.020*	
C9	0.02370 (8)	0.5336 (2)	0.79767 (11)	0.0151 (3)	
C10	0.04406 (8)	0.3851 (2)	0.84445 (12)	0.0178 (3)	

H10A	0 0740	0 3845	0 9093	0.021*
C11	0.02104 (9)	0.2372 (2)	0.79734 (12)	0.0200 (4)
H11A	0.0342	0.1364	0.8301	0.024*
C12	0.18631 (9)	0.6741 (2)	1.18835 (11)	0.0186 (3)
H12A	0.2176	0.7675	1.2179	0.022*
H12B	0.2104	0.5727	1.2208	0.022*
C13	0.12542 (9)	0.6968 (2)	1.19816 (13)	0.0212 (4)
H13A	0.1402	0.7015	1.2636	0.032*
H13B	0.0944	0.6044	1.1692	0.032*
H13C	0.1024	0.7992	1.1681	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U ¹²	<i>U</i> ¹³	U^{23}
P1	0.0129 (2)	0.0162 (2)	0.0174 (2)	0.00054 (16)	0.00725 (17)	0.00099 (17)
F5	0.0197 (5)	0.0208 (5)	0.0221 (5)	0.0054 (4)	0.0084 (4)	0.0053 (4)
F6	0.0233 (6)	0.0279 (6)	0.0390 (7)	0.0116 (5)	0.0115 (5)	0.0080 (5)
F1	0.0212 (8)	0.0261 (7)	0.0505 (14)	-0.0047 (6)	0.0224 (9)	-0.0001 (7)
F2	0.0303 (9)	0.0381 (9)	0.0169 (6)	0.0070 (7)	0.0083 (6)	-0.0039 (6)
F3	0.0263 (9)	0.0207 (8)	0.0519 (15)	-0.0042 (7)	0.0244 (11)	0.0045 (10)
F4	0.0382 (11)	0.0331 (9)	0.0228 (7)	0.0058 (8)	0.0157 (7)	-0.0062 (6)
N1	0.0127 (6)	0.0161 (7)	0.0134 (6)	0.0006 (5)	0.0056 (5)	-0.0010 (5)
N2	0.0112 (6)	0.0185 (7)	0.0137 (6)	0.0007 (5)	0.0044 (5)	-0.0010 (6)
C1	0.0122 (7)	0.0179 (8)	0.0151 (7)	0.0008 (6)	0.0057 (6)	-0.0011 (6)
C2	0.0126 (7)	0.0133 (7)	0.0157 (7)	-0.0015 (6)	0.0067 (6)	-0.0014 (6)
C3	0.0132 (8)	0.0175 (8)	0.0175 (8)	0.0002 (6)	0.0051 (7)	0.0007 (7)
C4	0.0131 (8)	0.0216 (9)	0.0238 (9)	0.0034 (7)	0.0074 (7)	0.0021 (7)
C5	0.0198 (9)	0.0219 (9)	0.0268 (9)	0.0000 (7)	0.0155 (8)	-0.0023 (8)
C6	0.0168 (8)	0.0189 (8)	0.0161 (8)	-0.0025 (6)	0.0082 (7)	-0.0023 (7)
C7	0.0112 (7)	0.0142 (8)	0.0165 (8)	-0.0017 (6)	0.0050 (6)	-0.0009 (6)
C8	0.0117 (7)	0.0202 (8)	0.0114 (7)	-0.0004 (6)	0.0022 (6)	0.0006 (6)
C9	0.0102 (7)	0.0201 (8)	0.0143 (8)	-0.0008 (6)	0.0059 (6)	-0.0009 (6)
C10	0.0117 (8)	0.0235 (9)	0.0147 (8)	-0.0010 (6)	0.0045 (6)	0.0018 (7)
C11	0.0146 (8)	0.0191 (8)	0.0227 (9)	0.0014 (6)	0.0072 (7)	0.0042 (7)
C12	0.0193 (8)	0.0216 (9)	0.0121 (7)	0.0021 (7)	0.0062 (7)	-0.0011 (7)
C13	0.0260 (9)	0.0195 (9)	0.0227 (9)	0.0017 (7)	0.0158 (8)	0.0017 (7)

Geometric parameters (Å, °)

P1—F2A	1.481 (14)	C4—C5	1.410 (3)
P1—F3A	1.552 (19)	C4—H4A	0.9500
P1—F4	1.5947 (14)	C5—C6	1.382 (2)
P1—F3	1.5957 (18)	С5—Н5А	0.9500
P1—F1	1.5987 (13)	C6—C7	1.390 (2)
P1—F6	1.6011 (12)	C6—H6A	0.9500
P1—F2	1.6077 (15)	C8—C9	1.522 (2)
P1—F5	1.6082 (11)	C8—H8A	0.9900
P1—F1A	1.656 (11)	C8—H8B	0.9900
P1—F4A	1.674 (14)	C9—C10	1.390 (2)
N1C1	1.330 (2)	C9—C9 ⁱ	1.409 (3)

N1—C2	1.397 (2)	C10—C11	1.391 (3)
N1—C12	1.478 (2)	C10—H10A	0.9500
N2—C1	1.337 (2)	C11—C11 ⁱ	1.383 (3)
N2—C7	1.395 (2)	C11—H11A	0.9500
N2—C8	1.467 (2)	C12—C13	1.518 (2)
C1—H1A	0.9500	C12—H12A	0.9900
C2—C7	1.392 (2)	C12—H12B	0.9900
$C^2 - C^3$	1 395 (2)	C13—H13A	0.9800
$C_2 = C_3$	1 383 (2)	C13_H13B	0.9800
C_{2} H_{2} Λ	0.0500	C13 H13C	0.9800
C5—115A	0.9500		0.9800
F2A—P1—F3A	95.5 (8)	N1—C1—H1A	124.8
F2A—P1—F4	157.6 (7)	N2—C1—H1A	124.8
F3A—P1—F4	106.7 (6)	C7—C2—C3	121.92 (15)
F2A_P1_F3	1119(7)	C7-C2-N1	106.67(14)
E4 D1 E3	90.44(11)	$C_3 C_2 N_1$	131.37(15)
$\Gamma + \Gamma \Gamma = \Gamma - \Gamma$	50.44 (11) 67.6 (7)	$C_3 = C_2 = C_1^2$	131.37(13) 115.99(16)
$F_2 A = F_1 = F_1$	07.0(7)	C4 = C3 = C2	113.88 (10)
F3A—P1—F1	102.7 (0)	C4 - C3 - H3A	122.1
F4 - FI - FI	90.05 (9)	C2—C3—H3A	122.1
F3—PI—FI	1/9.50 (11)	C3—C4—C5	122.29 (16)
F2A—P1—F6	88.8 (6)	C3—C4—H4A	118.9
F3A—P1—F6	86.5 (7)	C5—C4—H4A	118.9
F4—P1—F6	89.14 (8)	C6—C5—C4	121.35 (16)
F3—P1—F6	90.47 (9)	С6—С5—Н5А	119.3
F1—P1—F6	89.39 (7)	C4—C5—H5A	119.3
F3A—P1—F2	73.4 (6)	C5—C6—C7	116.48 (16)
F4—P1—F2	179.76 (10)	С5—С6—Н6А	121.8
F3—P1—F2	89.66 (11)	С7—С6—Н6А	121.8
F1—P1—F2	89.86 (9)	C6—C7—C2	122.06 (15)
F6—P1—F2	91.07 (7)	C6—C7—N2	131.37 (16)
F2A—P1—F5	91.4 (6)	C2-C7-N2	106.53 (14)
F3A—P1—F5	93.4 (7)	N2-C8-C9	112.54 (14)
F4—P1—F5	90.69.(7)	N2-C8-H8A	109.1
F3P1F5	80 30 (0)	C9 C8 H84	109.1
E1 D1 E5	00.35(7)	$N_2 C_8 H_{8}P$	109.1
F6 D1 E5	90.75(7)		109.1
10-11-15	1/9.70(9)		107.1
$F_2 - F_1 - F_3$	89.10(7)	$\Pi \delta A - C \delta - \Pi \delta B$	107.8
F2A—P1—F1A	92.3 (7)	$C10 - C9 - C9^{-1}$	119.25 (10)
F3A—P1—F1A	1/1.2 (/)	C10-C9-C8	121.89 (14)
F4—PI—FIA	65.9 (5)	C9-C9-C8	118.85 (9)
F3—P1—F1A	154.6 (5)	C9—C10—C11	120.70 (15)
F6—P1—F1A	97.8 (4)	C9—C10—H10A	119.6
F2—P1—F1A	114.0 (5)	C11—C10—H10A	119.7
F5—P1—F1A	82.2 (4)	C11 ⁱ —C11—C10	119.87 (10)
F2A—P1—F4A	175.5 (8)	C11 ⁱ —C11—H11A	120.1
F3A—P1—F4A	86.9 (7)	C10-C11-H11A	120.1
F3—P1—F4A	70.3 (5)	N1-C12-C13	112.13 (14)
F1—P1—F4A	110.2 (5)	N1—C12—H12A	109.2
F6—P1—F4A	95.2 (5)	C13—C12—H12A	109.2

F2	159.0 (6)	N1-C12-H12B	109.2
F_{2} P_{1} F_{4}	84 6 (5)	C_{13} C_{12} H_{12B}	109.2
$F_1 \Delta P_1 F_4 \Delta$	85 1 (6)	$H_{12} - C_{12} - H_{12}B$	107.9
C1 N1 C2	108 21 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C1 = N1 = C12	100.21(13)	C12_C13_H13P	109.5
CI = NI = CI2	127.07 (14)	С12—С13—НІЗВ	109.5
C2—N1—C12	124.68 (14)	H13A—C13—H13B	109.5
C1—N2—C7	108.18 (14)	C12—C13—H13C	109.5
C1—N2—C8	125.72 (14)	H13A—C13—H13C	109.5
C7—N2—C8	125.88 (14)	H13B—C13—H13C	109.5
N1—C1—N2	110.39 (14)		
C2 N1 C1 N2	0.80 (10)	N1 C2 C7 C6	179 (7 (15)
C2—INI—CI—IN2	-0.89 (19)	NI	-1/8.0/(15)
C12-N1-C1-N2	-178.83 (15)	C3—C2—C7—N2	177.24 (15)
C7—N2—C1—N1	0.45 (19)	N1—C2—C7—N2	-0.69 (18)
C8—N2—C1—N1	175.33 (15)	C1—N2—C7—C6	177.89 (18)
C1—N1—C2—C7	0.97 (18)	C8—N2—C7—C6	3.0 (3)
C12—N1—C2—C7	178.98 (15)	C1—N2—C7—C2	0.18 (18)
C1—N1—C2—C3	-176.69 (18)	C8—N2—C7—C2	-174.70 (15)
C12—N1—C2—C3	1.3 (3)	C1—N2—C8—C9	-109.15 (18)
C7—C2—C3—C4	-0.5 (2)	C7—N2—C8—C9	64.8 (2)
N1—C2—C3—C4	176.88 (17)	N2-C8-C9-C10	9.8 (2)
C2—C3—C4—C5	1.2 (3)	N2-C8-C9-C9 ⁱ	-169.32 (17)
C3—C4—C5—C6	-0.8 (3)	C9 ⁱ —C9—C10—C11	3.6 (3)
C4—C5—C6—C7	-0.4 (3)	C8—C9—C10—C11	-175.57 (16)
C5—C6—C7—C2	1.2 (3)	C9—C10—C11—C11 ⁱ	1.8 (3)
C5-C6-C7-N2	-176.25 (17)	C1-N1-C12-C13	15.8 (2)
C3—C2—C7—C6	-0.7 (3)	C2—N1—C12—C13	-161.87 (15)

Symmetry code: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C1—H1A····F6 ⁱⁱ	0.95	2.42	3.142 (3)	133
C3—H3A····F5 ⁱⁱⁱ	0.95	2.45	3.374 (2)	166
C5—H5A····F5 ^{iv}	0.95	2.52	3.420 (3)	159
C6—H6 A ···F4 ^v	0.95	2.53	3.392 (2)	151
C8—H8 <i>B</i> ···F1 ⁱⁱ	0.99	2.39	3.350 (3)	164
C13—H13 <i>C</i> …F1 ^{vi}	0.98	2.55	3.523 (2)	174
C13—H13 <i>C</i> ···F5 ^{vi}	0.98	2.50	3.166 (2)	125

Symmetry codes: (ii) x-1, y, z; (iii) x-1/2, -y+3/2, z+1/2; (iv) x-1/2, y-1/2, z; (v) -x+1, y, -z+3/2; (vi) -x+1, -y+2, -z+2.